Glauberman Correspondence of p-Blocks of Finite Groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE GLAUBERMAN AND WATANABE CORRESPONDENCES FOR BLOCKS OF FINITE p-SOLVABLE GROUPS

If G is a finite p-solvable group for some prime p, A a solvable subgroup of the automorphism group of G of order prime to |G| such that A stabilises a p-block b of G and acts trivially on a defect group P of b, then there is a Morita equivalence between the block b and its Watanabe correspondent w(b) of CG(A), given by a bimodule M with vertex ∆P and an endo-permutation module as source, which...

متن کامل

DEFECT ZERO p−BLOCKS FOR FINITE SIMPLE GROUPS

We classify those finite simple groups whose Brauer graph (or decomposition matrix) has a p-block with defect 0, completing an investigation of many authors. The only finite simple groups whose defect zero p−blocks remained unclassified were the alternating groups An. Here we show that these all have a p-block with defect 0 for every prime p ≥ 5. This follows from proving the same result for ev...

متن کامل

Cohomology Algebras of Blocks of Finite Groups and Brauer Correspondence II

Let k be an algebraically closed field of characteristic p. We shall discuss the cohomology algebras of a block ideal B of the group algebra kG of a finite group G and a block ideal C of the block ideal of kH of a subgroup H of G which are in Brauer correspondence and have a common defect group, continuing [4]. We shall define a (B,C)-bimodule L. The k-dual L∗ induces the transfer map between t...

متن کامل

Finite $p$-groups and centralizers of non-cyclic abelian subgroups

A $p$-group $G$ is called a $mathcal{CAC}$-$p$-group if $C_G(H)/H$ is ‎cyclic for every non-cyclic abelian subgroup $H$ in $G$ with $Hnleq‎ ‎Z(G)$‎. ‎In this paper‎, ‎we give a complete classification of‎ ‎finite $mathcal{CAC}$-$p$-groups‎.

متن کامل

ON p-NILPOTENCY OF FINITE GROUPS WITH SS-NORMAL SUBGROUPS

Abstract. A subgroup H of a group G is said to be SS-embedded in G if there exists a normal subgroup T of G such that HT is subnormal in G and H T H sG , where H sG is the maximal s- permutable subgroup of G contained in H. We say that a subgroup H is an SS-normal subgroup in G if there exists a normal subgroup T of G such that G = HT and H T H SS , where H SS is an SS-embedded subgroup of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2001

ISSN: 0021-8693

DOI: 10.1006/jabr.2001.8777